Block Deep Neural Network-Based Signal Detector for Generalized Spatial Modulation
نویسندگان
چکیده
منابع مشابه
Deep Neural Network Architectures for Modulation Classification
In this work, we investigate the value of employing deep learning for the task of wireless signal modulation recognition. Recently in [1], a framework has been introduced by generating a dataset using GNU radio that mimics the imperfections in a real wireless channel, and uses 11 different modulation types. Further, a convolutional neural network (CNN) architecture was developed and shown to de...
متن کاملA New Approach for Investigating the Complexity of Short Term EEG Signal Based on Neural Network
Background and purpose: The nonlinear quality of electroencephalography (EEG), like other irregular signals, can be quantified. Some of these values, such as Lyapunovchr('39')s representative, study the signal path divergence and some quantifiers need to reconstruct the signal path but some do not. However, all of these quantifiers require a long signal to quantify the signal complexity. Mate...
متن کاملA Differential Evolution and Spatial Distribution based Local Search for Training Fuzzy Wavelet Neural Network
Abstract Many parameter-tuning algorithms have been proposed for training Fuzzy Wavelet Neural Networks (FWNNs). Absence of appropriate structure, convergence to local optima and low speed in learning algorithms are deficiencies of FWNNs in previous studies. In this paper, a Memetic Algorithm (MA) is introduced to train FWNN for addressing aforementioned learning lacks. Differential Evolution...
متن کاملDeep neural network bottleneck features for generalized variable parameter HMMs
Recently deep neural networks (DNNs) have become increasingly popular for acoustic modelling in automatic speech recognition (ASR) systems. As the bottleneck features they produce are inherently discriminative and contain rich hidden factors that influence the surface acoustic realization, the standard approach is to augment the conventional acoustic features with the bottleneck features in a t...
متن کاملImproving Massive MIMO Belief Propagation Detector with Deep Neural Network
In this paper, deep neural network (DNN) is utilized to improve the belief propagation (BP) detection for massive multiple-input multiple-output (MIMO) systems. A neural network architecture suitable for detection task is firstly introduced by unfolding BP algorithms. DNN MIMO detectors are then proposed based on two modified BP detectors, damped BP and maxsum BP. The correction factors in thes...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Communications Letters
سال: 2020
ISSN: 1089-7798,1558-2558,2373-7891
DOI: 10.1109/lcomm.2020.3015810